HIWRAP HS3 Status

Gerald Heymsfield / NASA / Goddard Space Flight Center and HIWRAP Team

High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP)

MEASUREMENTS GOALS:

- Precipitation and 3-D winds
- Ocean surface vector winds in clear to light rain regions

HIWRAP Characteristics:

- Conically scan
- Ku/Ka-band
- Two beams: 30 and 40 deg incidence.
- Fully solid-state radar
- GPM radar frequencies.

HIWRAP System

Pass Across Karl's Eye

HIWRAP Scan #0216 20100917 05:51:28 Ku-band Inner Chirp DOPCORR Tilt: 29.80

Doppler:
Unfolded
Corrected for aircraft motions

HIWRAP Doppler Unfolding

- Ku-band automated unfolding working reasonably well.
- Ka-band is more problematic because of low Nyquist velocity
- Tests are in progress to use Ku-band with higher Nyquist velocity to unfold Ka-band Doppler

PRF: 4000, 5000 Hz

Pulse-pair velocities: low PRF, high PRF, dual PRF

Ku: 20, 25, 100 m/s Ka: 8, 10, 40 m/s

HIWRAP Current Instrument Status

- Radar hardware and software is under preparation for HS3 mission. There are no issues so far.
- Improvements since GRIP/MC3E
 - Improved sub-channel isolation by adjusting the subchannel center frequencies in DDS waveform generation firmware.
 - Implemented a unique pulse and linear FM chirp waveform sequence for range sidelobe mitigation in the pulse compression channels.
 - Pulse compression and pulse pair processing firmware
 - New data system enclosure for better thermal and electrical performance
 - Battery backup for navigation system.
- Other:
 - HIWRAP Stage 4 (operational) license approved

HIWRAP Pulse Transmission for HS3

- Three pulses tranmitted: $2 \mu s$, $20 \mu s$, $2 \mu s$
 - First pulse: near surface returns
 - Second pulse: main chirp pulse, most sensitive channel, but range side lobes near surface
 - Third pulse for near aircraft returns in pulse compression blind zone

Example from MC3E so expected HS3 minimum reflectviity will be ~6 dB higher

HIWRAP Data Flow - HS3

Processing & Data

Instrument	Data Product	Description	Preliminary Latency Not to Exceed	Final Latency Not to Exceed
Doppler	Level 1	Calibrated reflectivity,	3 months	9 months
Radar		Doppler velocity		
Doppler	Level 2	Radial coordinate	6 months	9 months
Radar		products including		
		VAD, surface winds		
Doppler	Level 3	Gridded reflectivities,	6 months	9 months
Radar		winds		
Radar Doppler		products including VAD, surface winds Gridded reflectivities,		

Notes

- •2012 HS3 flights will require software revision to accommodate pulse-pair processed data.
- Level 1: Data will be broken into 1 hour files; geolocation information will obtained with an IDL or Matlab routine applied to the netCDF Level 1 file.
- Level 3 (gridded) will be smoothed version of retrieval.
- Ocean surface winds still need a lot of work; calibration needs more work.

Retrieved Winds from Hurricane Karl (2010)

- HIWRAP made 20 crossings of Hurricane Karl on September 17, 2010 during GRIP over 14 hours.
- Doppler line of sight wind measurements are continually profiled during the conical scans.
- Horizontal winds are calculated from Doppler winds from multi look angles as the Global Hawk passes across the storm.

HIWRAP Measurement Geometry

Horizontal winds (m/s) and reflectivity (dBZ)
derived from one pass across
Hurricane Karl's eye/eyewall region

Planned Real Time Products

- Selected gates (e.g., 2, 4, 6 km) from one beam at each frequency -> Reflectivity and horizontal wind maps at specific altitudes
- Single profiles (0 or 180 deg azimuth) -> vertical cross section along GH track
- Selected gates around surface -> ocean winds, PBL winds

RT downlink in progress, not sure it will be ready for 2012 flights.

Any processing or mapping done on ground.

Sept 24 0714 - 0744UTC Reflectivity

Ku-band Inner Beam

Ka-band Inner Beam

Sept 24 0714 - 0744UTC

Ka-band Horizontal Velocity

CIMMS cloud track 200 mb wind derived winds ~15 m/s toward W-SW. Shear ~15 m/s

Ka-band
W + vt
(hydrometeor motion)

Ocean Surface Winds

Still in preliminary stage but very promising.

How well can we see under clouds and remove rain/cloud ambiguities?

Normalized
<- Radar Cross
Section

Future Hardware Upgrades

- New IF up and down-conversion boards for better channel isolation.
- Amplitude modulation in FM chirp waveform for further pulse compression range side lobe reduction.
- Ka-band transceiver upgrade: improve sensitivity by 10dB by using a 40 W SSPA and low loss front-end components.

Summary

- Many improvements to radar hardware since GRIP in preparation for HS3.
- To be completed before HS3:
 - Digital receiver processing algorithm testing
 - New data system testing including multiple disk data storage
 - GPS battery backup
- Issues/Concerns
 - Digital receiver processing firmware testing
 - Solid state disk reliability

Questions?